
3E. The maximum clock rate was 60 MHz.
Slices Flip-Flops LUTs IOBs
1424 (30%) 1106 (11%) 2716 (29%) 134 (57%)

There are 76 cycles per output, and so the total throughput for
devsha256’ is calculated as:

(60MHz ⇥ 512bits)/76cycles = 404Mbps

This throughput for the devsha256’ accelerator is on the
low end of the performance spectrum of the hand-crafted
VHDL implementations reported in Chaves et al. [6]—higher
than Sklavos and Koufopavlou [11] (376 Mbps) and lower
than Chaves et al. [6] (1370 Mbps). The aforementioned prior
works are not targeting the same FPGA, and so the above is
something of a sort of “apples-to-oranges” comparison. The
performance numbers should be taken merely as indicative that
performance is reasonable for a rapidly developed prototype.

V. CONCLUSIONS & FUTURE WORK

This paper explores the application of ideas and techniques
from functional languages to the model-driven design and syn-
thesis of hardware artifacts and demonstrates the methodology
with a significant case study from cryptographic algorithms.
Starting from a reference semantics for SHA-256, several for-
mally verifiable implementations with acceptable performance
are derived. Because this model-driven design takes place in
the Haskell language, formal specification is straightforward.

One aspect of this derivation is its speed—most of the time
in this experiment was spent in comprehending the semi-
formal specification of SHA-256 [13]. Given the reference
semantics, deriving both accelerator implementations took on
the order of one hour’s time. Admittedly, this evidence is
anecdotal and, furthermore, the derivation was performed by
the authors who have considerable experience with Haskell
and ReWire. Still, functional programmers will recognize the
basic process illustrated in Sections III and IV as mainly (in
the jargon of monadic programming [20]) lifting a function
through a monad transformer. Most functional programmers
could fairly quickly understand and apply this methodology.

The methodology has things in common with hardware-
software codesign, in particular that a given application is
partitioned into separate hardware and software components.
This partitioning is reflected in the types in that the hardware
component must have, what we called in Section III, the type
Device. As it stands, the hardware and software components
are completely disconnected, therefore, to use the hardware
accelerators, one would have to write a new software wrapper
to call the synthesized accelerator. An intriguing next step for
this research explores the automatic generation of integration
code to connect the Haskell “software partition” to the device
generated from the “hardware partition.” This would provide
a uniform, functional language for seamlessly constructing
heterogeneous applications.

The authors are currently formalizing ReWire with the Coq
proof assistant [22] as both a means of automating formal
verification of ReWire security and correctness specifications

and of verifying the ReWire compiler itself. In conjunction
with the aforementioned functional language for heteroge-
neous applications, formalized ReWire would provide a basis
for formally verifying heterogeneous applications.
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